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Abstract: We consider the effect of a periodic perturbation with frequency ω on the

holographic N = 4 plasma represented by the planar AdS black hole. The response of

the system is given by exponentially decaying waves. The corresponding complex wave

numbers can be found by solving wave equations in the AdS black hole background with

infalling boundary conditions on the horizon in an analogous way as in the calculation

of quasinormal modes. The complex momentum eigenvalues have an interpretation as

poles of the retarded Green’s functions, where the inverse of the imaginary part gives an

absorption length λ. At zero frequency we obtain the screening length for a static field.

These are directly related to the glueball masses in the dimensionally reduced theory. We

also point out that the longest screening length corresponds to an operator with non-

vanishing R-charge and thus does not have an interpretation as a QCD3 glueball.
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1. Introduction

The AdS/CFT correspondence is a concrete realization of the idea that the large-N limit of

non-Abelian gauge theories can be described by a dual string theory [1]. In the large ’t Hooft

coupling regime the dual theory admits a description in terms of gravitational fields over

a weakly curved background. More precisely the AdS/CFT correspondence proposes an

exact duality between N =4 super Yang-Mills in four dimensions and type IIB superstrings

in AdS5 × S5 . This theory is conformal, but at finite temperature conformal symmetry

is broken and the theory is in a deconfining (or plasma) phase. The dual description

corresponds to a black hole geometry with flat horizon [2].

Heavy-ion collisions at RHIC [3] and lattice simulations [4] indicate that QCD actually

stays strongly coupled above the deconfinement transition up to temperatures T ∼ 2Tc.

Therefore, it is of great interest to develop non-perturbative tools that can describe the

properties of the strongly coupled plasma. Lattice simulations are good to describe ther-

modynamical properties, but out-of-equilibrium processes are much harder to analyze. In

this context, the AdS/CFT correspondence could provide a better framework to derive

some plasma properties using analytic methods. Although N = 4 is far from QCD, some

qualitative properties of the plasma seem to be quite similar, and AdS/CFT computations
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of the shear viscosity [5], the energy loss rate of a heavy quark [6] or the jet quenching

parameter using light-like Wilson loops [7] show good agreement with experimental data.

Many of the properties of the plasma can be studied using linear response theory. In

this approximation, small perturbations that do not change significantly the state of the

plasma are introduced. The system then tries to restore thermal equilibrium. That involves

dissipation if the perturbations are localized in time or absorption if they are localized in

space.1 We would like to address the latter in this work. The absorption is directly related

to spatial correlations in the equilibrium state. At high temperatures the system is in a

very disordered phase, so measures made in different parts of the plasma give uncorrelated

results. For the same reason, a small perturbation cannot travel too far in the plasma

before being washed out by thermal fluctuations. How far this can be depends on the

details of the plasma, but in general we expect that the characteristic absorption lengths

decrease as the temperature increases.

In the gravity dual picture the absorptive properties of the plasma rely on the presence

of a horizon. Small classical perturbations end up falling into the horizon, either after a

finite time or after travelling a finite distance.2 The first is described by complex values for

the eigenfrequency, the quasinormal modes, and the second by complex momentum values.

Both are intimately related, they correspond to solutions of the linearized equations of

motion. They also satisfy the same boundary conditions, Dirichlet at the AdS boundary3

and infalling at the horizon. The difference is that quasinormal modes decay exponentially

in time while complex momenta describe the decay along the direction of propagation.

The choice of boundary conditions restricts the possible values of complex frequency or

momentum to a discrete set. In the dual gauge theory we can interpret them as inverse

relaxation times τ or inverse absorption lengths λ of the plasma. The relaxation time

depends on the (real-valued) wave number k whereas the absorption length depends on the

(real-valued) frequency ω, i.e. λ = λ(ω). In the gravity theory we therefore fix a frequency,

impose infalling boundary conditions on the horizon and search then for a solution of the

boundary condition at infinity in the complexified momentum plane. In this way we can

compute the frequency dependence of the absorption lengths.

Quasinormal modes have been much studied in the context of black holes in flat space-

time (see [9] for a review) and in the AdS/CFT correspondence [10 – 13, 8, 14, 15]. Complex

momenta have been studied for horizons of compact spatial geometry, where they corre-

spond to Regge poles [16] of the black hole S-matrix. In the AdS/CFT correspondence, the

zero frequency limit of complex momenta gives the glueball masses of QCD3, as computed

in refs. [17 – 19]. While this work was in progress the interpretation of glueball masses as

correlation lengths was also emphasized in [20].

The content of the paper is the following. In section 2 we explain in detail the relation

between complex momenta and absorption lengths. We show that they arise as the poles

of the retarded Green’s function and give an argument based on stability considerations

1There can also be diffusion effects if conserved charges are involved.
2In AdS space the curvature acts effectively as a box, so they cannot escape to infinity.
3Actually, the condition is that they should be normalizable modes, so in the gauge theory they corre-

spond to states and not to the insertion of sources or couplings (c.f. [8]).
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showing that the poles have to lie in the first and third quadrants of the complex momentum

plane. In section 3, we compute the frequency dependence of the largest correlation lengths

for scalar operators of conformal dimension ∆ = 4, global currents, and the transverse and

shear channels of the stress-energy tensor, respectively. We also show the relation with

QCD3 glueball masses. The paper ends with a summary of our results and some outlook

to future possible investigations in section 4. In appendix A we comment on the form of

the effective potentials that arise in rewriting the wave equations on AdS in the form of a

Schrödinger equation and in appendix B we show how to avoid the “false frequencies” that

arise in the numerical algorithm based on the Heun equation [13].

2. Absorption lengths in AdS/CFT

In ref. [22] the authors gave a prescription to compute retarded two-point Green’s functions

in the context of the AdS/CFT correspondence with Lorentzian signature. It was empha-

sized that retarded propagators correspond to imposing an infalling boundary condition at

the horizon for the fields on the gravity side. On the other hand, infalling boundary condi-

tions are also the constitutive ingredient for the calculation of the quasinormal frequencies

of black holes in anti de Sitter space [10].4 The authors of [11] observed that the quasi-

normal frequencies of BTZ black holes coincide with the poles of the retarded two-point

functions in the dual two dimensional conformal field theory. In [13, 8] it was shown that

this observation extends generally to the Lorentzian AdS/CFT correspondence, i.e. quasi-

normal frequencies in AdS can be interpreted as the poles of retarded Green’s functions in

the dual field theory.

Let us remember the interpretation of the poles of the retarded Green’s function GR.

The response in the field φ of the system under consideration is obtained by the convolution

of the perturbation represented by the source j(t,x) with the retarded Green’s function

φ(t,x) := −
∫

dτ dξ GR(t − τ,x − ξ) j(τ, ξ) . (2.1)

If one chooses a perturbation localized in time, figuratively speaking one “hits” the plasma

once at time t = 0, the perturbation is given by j(t,x) = δ(t) exp(iqx).5 Considering

the Fourier transform of the retarded propagator and performing τ and ξ integrations one

arrives at

φ(t,x) = − eiqx

2π

∫
dν G̃R(ν,q) e−iνt . (2.2)

One can now make the analytical continuation to the complex ν-plane and use Cauchy’s

theorem. For t > 0 we form a closed contour with a semicircle at infinity on the lower-half

ν-plane, whereas for t < 0 we would close it in the upper-half ν-plane. One obtains

φ(t,x) = i sign(t) eiqx
∑

νn:poles

e−iνnt Res G̃R(ν,q)
∣∣∣
ν=νn

, (2.3)

4For a more general review of quasinormal modes see [9].
5The x-dependence is that of a plane wave; however a general dependence can be constructed by super-

positions of plane waves.
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Im ν

Re ν

Figure 1: The relevant integration contour for the poles in the ν-plane. All the poles are in the

lower-half plane, corresponding to the interpretation of quasinormal modes as the poles of a retarded

Green’s function.

At this point we assume that the retarded Green’s function is analytic in the upper half

of the frequency plane and that its only singularities are single poles in the lower half

plane. This is indeed the analytic structure that appears in the Lorentzian AdS/CFT

correspondence at finite temperature [8]. In general, the analytic structure of retarded

two-point functions is of course more complicated and involves also branch cuts. The

authors of [21] computed the retarded two-point function of tr (F 2) at weak coupling and

found a tower of branch cuts with branch points located at ω± q = −i4πnT . In this paper

we will only consider the strict large N and strong coupling limit. Therefore, the response of

the system to a perturbation localized in time is determined by the sum over the residues of

G̃R at the poles. In the holographic gauge theory these poles are precisely the quasinormal

frequencies of the perturbation on AdS space subject to the infalling boundary condition.

Instabilities, i.e. exponentially growing modes, appear as quasinormal frequencies with

positive imaginary part. This is consistent with the interpretation as retarded Green’s

function, where singularities in the upper half plane would correspond to tachyonic modes

travelling backwards in time. A typical arrangement of quasinormal frequencies as they

appear in the analysis of small perturbations of asymptotically AdS black hole spacetimes

is depicted in figure 1.

Let us choose now another kind of perturbation. This time we will pick a periodic

perturbation localized in space, i.e. we switch the roles of time and one space coordinate

and assume a source of the form j(t,x) = δ(x) exp[−i(ωt−k⊥x⊥)]. We compute the effect

of such a perturbation again in linear response theory. Doing the Fourier transform of the

retarded propagator and performing ξ⊥ and τ integrations one finds

φ(t,x) = − 1

(2π)
e−i(ωt−k⊥x⊥)

∫
dq G̃R(ω,k⊥, q) eiqx , (2.4)

This is the response of the system to a periodic perturbation with frequency ω that is

localized in the x-direction and has the form of a plane wave in the perpendicular directions

x⊥. We have assumed that the perturbation has started far in the past such that all

transient oscillations have already vanished and the system has reached a stationary state.

In the following we will also assume that the perturbation is not further modulated in the
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(a) (b)

Figure 2: The relevant integration contours for the poles in the complexified momentum-plane.

Figure (a) shows the contour for x < 0, and figure (b) shows the contour for x > 0. In order

to obtain exponentially decaying waves travelling away from the origin of the perturbation it is

necessary that the poles lie in the 1st and 3rd quadrants.

x⊥-directions, i.e. we set k⊥ = 0. Now one can use again Cauchy’s theorem, closing in the

upper or lower-half planes for x > 0 and x < 0, respectively. The result is

φ(t, x) = −i sign(x) e−iωt
∑

qn:poles

eiqnx Res G̃R(ω, q)
∣∣∣
q=qn

, (2.5)

Again we have assumed that the only singularities of GR(ω,q) are poles in the complexified

momentum plane. By symmetry considerations (x → −x) it is clear that if q = qn =

qR
n + iqI

n is a pole then also q = −qn has to be a pole. We would like the poles in the

upper-half to lie in the first quadrant and those in the lower-half in the third quadrant.

With such and arrangement of poles the perturbation is creating damped waves moving

to the right for x > 0 and to the left for x < 0. The waves propagate away from the

origin of the perturbation at x = 0 and are exponentially decaying with the distance

from the perturbation. In subsection 2.1 we prove that for the holographic retarded two-

point functions the poles do indeed fall into the first and third quadrants of the complex

momentum plane. A typical setup with the corresponding integration contours is depicted

in figure 2. The imaginary part of the complex wave number can be interpreted as the

inverse of an absorption length. For a given complex momentum pole qn the right-moving

wave has the form e−i(ωt−qR
n x) e−qI

nx. The amplitude of the wave has decayed to a factor of

1/e at a distance of λn = 1/qI
n.

In the following we will be interested in computing these absorption lengths and their

frequency dependence in the holographic dual of the N =4 supersymmetric gauge theory

in the plasma phase. We will do this for different kinds of perturbations corresponding to

certain gauge-invariant operators. In the gravity side we have to solve wave equations with

purely infalling boundary conditions at the horizon just as in the calculation of quasinormal

modes. At the boundary of AdS we have to specify the same boundary conditions that

have been described in refs. [13, 8] for the quasinormal modes. The imaginary part of these
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complex momentum wave numbers give absorption lengths characteristic of the black hole.

After having traveled a distance λn a part of the wave has fallen into the black hole such

that the amplitude is diminished by a factor of e−1. In the gauge theory dual the inverse of

the imaginary part of the momenta can be seen as the absorption lengths for perturbations

of the plasma by sources corresponding to gauge-invariant operators.

Thus, we see that in both cases — relaxation times and absorption lengths — the

gravity waves are subject to the infalling condition at the horizon. The question is simply

which parameter of the retarded Green’s function is analytically continued to complex

values, either the frequency or the momentum. To compute these complex momentum

wave numbers one can therefore follow the same strategy that is used for the calculation

of quasinormal frequencies, but fixing the frequency ω to be real-valued instead of the

momentum q.

This switch of roles is particularly clear in the case of the AdS3/CFT2 correspondence,

where the exact retarded Green’s functions can be calculated in both sides and seen to

match [11]. Let us consider the case of a field with conformal dimension ∆ = 2. Then the

retarded two-point function is

G
(2d)
R (ω, q) =

ω2 − q2

4π2

[
ψ

(
1 − i

ω − q

4πT

)
+ ψ

(
1 − i

ω + q

4πT

)]
. (2.6)

The poles of the ψ function determine the quasinormal frequencies ωn = ±q− i4πT (n+1).

For each quasinormal mode the dispersion relation ωn = ωn(q) is linear. Because of this

linearity the poles can also be interpreted in a different way by writing

qn = ±[ω + i4πT (n + 1)] , n ∈ N , (2.7)

where we see explicitly that the complex momentum modes lie in the first and third quad-

rants for the right- and left-movers respectively.

In higher dimensions the dispersion relations for the quasinormal frequencies are not

linear and can be computed only numerically. At zero momentum, the position of large

frequencies in the complex momentum plane has been estimated using semiclassical meth-

ods [24], it would be interesting to extend those analysis to non-zero momentum. Since

the dispersion relation for the quasinormal modes is known only numerically we also have

to resort to numerical methods to find the complex wave numbers and absorption lengths.

The only exception is given by the hydrodynamic modes that appear for small frequency

and wave numbers [25, 26]. We will see that our numerical results are in agreement with

the analytic dispersion relations of the hydrodynamic modes.

2.1 Stability analysis

We will now perform a stability analysis analogous to the one for quasinormal modes

in [10]. We will see that the complex momentum wave numbers indeed lie in the first and

third quadrants of the complex q-plane for positive frequencies. Note that a pole in the

second or fourth quadrant would allow to construct outgoing waves that are exponentially

growing with the distance from the perturbation. For the stability of the system under the

perturbation the absence of such poles is therefore crucial.
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The time and space dependence of the field is given by simple exponentials

φ(t, x) ∼ e−iωt eiqx ,

where q := qR + iqI . We will distinguish between the cases x > 0 and x < 0.

For x > 0 stability demands an exponentially decaying wave and therefore sign qI =

+1. We further demand that the wave is outgoing from the origin of the perturbation

which demands sign ω = sign qR. Taking these two facts together amounts to the condition

sign

(
ω

qR

)
= sign qI . (2.8)

Doing the same analysis for x < 0, one finds that the perturbation moves away to the

left if sign ω = − sign qR, whereas the stability condition is now sign qI = −1. This again

amounts to eq. (2.8).

We want to prove now that in the gravity dual the complex momentum modes of the

black hole follow indeed the rule given by equation (2.8). We consider a minimally coupled

scalar Φ in AdS5 × S5 with mass m. The line element of the AdS black hole with planar

horizon is

ds2
AdS =

r2

R2

(
−f(r)dt2 + dx2

)
+

R2

r2f(r)
dr2 , (2.9)

where f(r) = 1 − (rH/r)4. The temperature is given through rH = πR2T . We will

use in the following the coordinate z = rH/r and rescale time and space coordinates by

rHR−2(t,x) 7→ (t,x). The boundary is now located at z = 0 and the horizon at z = 1.

The equation of motion for a minimally coupled scalar Φ(t, z, x) = exp(−iωt + iqx)Φ(z)

of mass m is

Φ′′ +

(
f ′(z)

f(z)
− 3

z

)
Φ′ +

(
ω2

f(z)2
− q2

f(z)
− m2

z2f(z)

)
Φ(z) = 0 . (2.10)

We can further split Φ(z) = σ(z) y(z), in order to find an equation for y(z) that is

Schrödinger-like in a ‘tortoise’ z∗ coordinate defined through

dz∗ =
dz

f(z)
⇒

(
∂2

z∗ + ω2 − V (z∗)
)
y(z∗) = 0 , (2.11)

provided that σ(z) fulfils
σ′(z)

σ(z)
=

3

2z
. (2.12)

In the z coordinate the Schrödinger potential reads

V (z) =
f(z)

4z2

(
15 + 4m2 + 4q2z2 + 9z4

)
:= V0(z) + Re(q2) f(z) + i Im(q2)f(z) , (2.13)

where we have separated it into its real and imaginary parts. In the z∗ coordinate the

horizon lies at z∗ → +∞ and the potential vanishes there, so the wavefunction can be

described as a superposition of plane waves. The infalling boundary condition corresponds

to setting y(z∗) = eiωz∗ χ(z∗) with χ(+∞) = const. Thus we find
(
∂2

z∗ + 2iω ∂z∗ − V0(z∗) − Re(q2) f(z∗) − i Im(q2) f(z∗)
)

χ(z∗) = 0 . (2.14)

– 7 –
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If we multiply by the conjugate χ(z∗) and pick out the imaginary part of the equation we

obtain

− i

2
(χ∂2

z∗χ − χ∂2
z∗χ) + ω ∂z∗ |χ|2 − Im(q2)f(z∗)|χ|2 = 0 , (2.15)

Now we integrate this equation between the boundary (z∗ = zb
∗) and the horizon (z∗ = +∞).

Upon a partial integration the derivative terms cancel each other: χ(z∗) vanishes at the

boundary due to the Dirichlet boundary condition we impose there and at the horizon the

derivative vanishes ∂z∗χ(+∞) = 0. The remaining terms in equation (2.15) amount to

ω |χ(z = 1)|2 = Im(q2)

∫ ∞

zb
∗

dz∗ f(z∗)|χ(z∗)|2 = Im(q2)

∫ 1

0
dz |χ(z)|2 , (2.16)

The integral on the right hand side is positive definite, which then implies that sign ω =

sign Im(q2) = sign(qRqI) which is precisely the stability condition (2.8).

There is a further stability condition involving the properties of the potential. When

ω = 0, we have the condition that Im(q2) = 0, so either qR = 0 or qI = 0. Consider now the

real part of the Schrödinger equation (2.14). After multiplying by χ(z∗) and integrating

between the boundary and the horizon we find

∫ ∞

zb
∗

dz∗
(
|∂z∗χ(z∗) + iωχ(z∗)|2 + (V0(z∗) − ω2)|χ(z∗)|2

)
= −Re(q2)

∫ 1

0
dz |χ(z)|2 , (2.17)

Clearly, if V0(z∗) ≥ 0 between the boundary and the horizon, then, at ω = 0, Re(q2) < 0

and we will have qR = 0 and qI 6= 0. On the other hand, if the potential is negative

on some region, then there could be solutions with Re(q2) > 0 or equivalently qR 6= 0

and qI = 0. Considering four-dimensional Minkowski slices of AdS5, these modes can be

regarded as tachyonic instabilities of negative mass squared m2 = −(qR)2. Notice that

with our choice the boundary conditions ∼ eiωz∗ and fixing ω to be real, this condition

actually refers to the presence of ’negative energy’ modes in the scattering spectrum, so

only when the potential is negative at the horizon this kind of instabilities could appear.

Other instabilities associated to the presence of bound states could be present, see the

appendix A for a discussion.

If Re(q2) > 0 instabilities are present in the bulk theory, the gauge correlation functions

associated to the dual operators will show an oscillatory behavior at large separations, as

opposed to vanishing, indicating that the plasma is actually out of equilibrium. From the

point of view of the effective three-dimensional theory, instabilities will appear as tachyonic

states in the spectrum.

3. Absorption lengths: numerical analysis

3.1 Scalar operators

As a first example we want to compute the absorption lengths of a scalar operator O(t,x)

of conformal dimension ∆ = 4. We choose this particular case because it is the simplest

setup we can use to illustrate the method, since the dual supergravity field corresponds to

– 8 –
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a minimally coupled, massless scalar. A possible example is given by O = trF 2, that maps

to the dilaton in the holographic dual.

Consider the retarded two-point correlation function in the theory attemperature T

GR(t − t′,x − y) = −i θ(t − t′)
〈
[O(t,x),O(t′,y)]

〉
. (3.1)

At large distances |x−y| ≫ T−1, the Green’s function decays exponentially due to thermal

screening. As we have explained, this behavior is determined by a set of discrete lengths

that in linear response theory describe the absorption of out-of-equilibrium perturbations.

For the theory in equilibrium they are identified with correlation lengths in the plasma,

as proposed in ref. [20]. The squared inverse of the zero-frequency correlation lengths can

also be regarded as the glueball masses6 of a three-dimensional effective theory in the high-

temperature limit [17 – 19]. Via AdS/CFT correspondence we can reduce this complicated

non-perturbative problem in the gauge theory to finding the complex momenta that allow

the dilaton fluctuations to obey infalling boundary conditions on the horizon and Dirichlet

ones on the boundary. In this example, and in the other cases we consider in this paper, the

equations of motion can be reduced to Heun equations that we can solve using semi-analytic

methods.

The equation of motion for this field was already derived in subsection 2.1. Throughout

the paper we use dimensionless frequency and momentum. In order to recover the dimen-

sionful quantities it is enough to make the substitution (ω,q) 7→ πT (ω,q). Changing

coordinates from z to x = 1 − z2, the equation now reads

Φ′′ +
1 + (1 − x)2

x(1 − x)(2 − x)
Φ′ +

(
ω2

4x2(1 − x)(2 − x)2
− q2

4x(1 − x)(2 − x)

)
Φ(x) = 0 . (3.2)

This equation has four regular singular points at x = 0, 1, 2,∞, with characteristic

exponents

{0;−iω/4,+iω/4} , {1; 0, 2} , {2;−ω/4,+ω/4} , {∞; 0, 0} .

Therefore, we can transform it into a Heun equation and we can follow the analysis de-

scribed in [12]. To compute the complex wave numbers we simply have to analytically

continue the momentum instead of the frequency. It is interesting to observe that none of

the characteristic exponents at the singular points depend on the momenta. We factorize

Φ(x) as

Φ(x) = x−iω/4 (1 − x)2 (2 − x)−ω/4 y(x) , (3.3)

which allows us to write the equation of motion in the standard form of a Heun equation

for y(z)

y′′(x) +

(
γ

x
+

δ

x − 1
+

ǫ

x − 2

)
y′(x) +

αβx − Q

x(x − 1)(x − 2)
y(x) = 0 , (3.4)

with parameters

α = β = 2 − ω

4
(1 + i) , Q = 4 +

q2

4
− (1 + 7i)

ω

4
− (2 − i)

ω2

8
, (3.5)

γ = 1 − i
ω

2
, δ = 3 , ǫ = 1 − ω

2
. (3.6)

6In this particular example we are considering J
PC = 0++ glueballs.
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All the other perturbations we will consider in this paper can be transformed to Heun

equations in a similar way. In [13] the same perturbations have been studied in order

to solve for the quasinormal modes. The solution y0(x) corresponding to the infalling

boundary conditions at the horizon x = 0 is a linear combination of local solutions y1,A,y1,B

at x = 1

y0(x) = Ay1,A(x) + B y1,B(x) , (3.7)

where y1,A is analytic at x = 1. The retarded Green’s function turns out to be proportional

to

GR ∝ A

B
, (3.8)

and the poles correspond therefore to the solutions with B = 0, i.e. solutions that are

analytic in the interval x ∈ [0, 1]. These boundary conditions determine a discrete set of

complex momentum eigenvalues if we fix the frequency ω to real values.

We can find local solutions using the Frobenius method close to the singularities. In

the cases under consideration, a solution with boundary condition y(0) = const. will be

a superposition of solutions with exponents 1 − δ ≤ 0 and 0 close to the AdS boundary

(x = 1). The boundary condition y(1) = const. can be satisfied only for a discrete set of

frequencies ω or momenta q. These values can be computed imposing matching conditions

at some intermediate point for the Frobenius series although we will need a large number of

terms and the convergence gets worse for higher frequencies. There is an alternative method

based on the improved convergence of the solutions. Normal solutions are convergent for

|x| < 1, but for some values of the parameters the solutions can converge for |x| < 2.

This condition of extended convergence boils down to a transcendental equation for the

frequencies or momenta in the form of a continued fraction (see [27, 12] for more details)

using Pincherle’s theorem on the existence of minimal solutions to three term recursion

relations.

The coefficients of the Frobenius series at x = 0 should satisfy the recursion relation

an+2 + An(ω, q) an+1 + Bn(ω, q) an = 0 , n ≥ 0 , (3.9)

where

An(ω, q) = −(n + 1)(2δ + ǫ + 3(n + γ)) + Q

2(n + 2)(n + 1 + γ)
, (3.10)

Bn(ω, q) =
(n + α)(n + β)

2(n + 2)(n + 1 + γ)
, (3.11)

and a0 = 1, a1 = Q/2γ. Then, using the recursive definition

rn =
an+1

an
= − Bn(ω, q)

An(ω, q) + rn+1
. (3.12)

Pincherle’s theorem states that a minimal solution to the three term recursion rela-

tion (3.10) exists if and only if the continued fraction on the right hand side in (3.12)

converges. Moreover, in this case it converges precisely to an+1/an. In [12, 13] it was

pointed out that the minimal solution corresponds precisely to a solution of the Heun

– 10 –
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qI versus qR for the first five complex momentum eigenvalues

Figure 3: We have traced the locations of the five lowest momentum eigenvalues in the complex

q-plane for different frequencies as a function of the frequency out to ω = 50. The momentum

eigenvalues vary continuously with the frequency and lie on the analogues of Regge trajectories.

equation that is analytic at x = 1 therefore fulfilling the correct boundary conditions.

Choosing n = 0 we find

r0 =
Q

2γ
, (3.13)

and computing r0 recursively gives a transcendental equation for q. Using this formula, we

can compute numerically the complex momentum modes with high precision. In order to

do that, we cut the fraction at a large value n = n∗ = 100 and use the asymptotic value

rn = 1/2 − (2 + ω)/4n∗. It is important to realize that Pincherle’s theorem applies only

if we are dealing with genuine three term recursion relations. Sometimes it can happen

that the recursion relation involves three terms only from a certain value of n = n1 on.

This happens for example if either α = 0 or β = 0 when B0 = 0. In such a case one

has to use (3.12) with n = n1. We will see that we are faced with this in the cases of

the longitudinal vector field perturbations and of the shear mode perturbations at ω = 0.

Since α = 0 in both cases it is sufficient to take n1 = 1 and use

r1 =
Q2 + 3Qγ − 2αβγ + 2Qδ + Qǫ

4Q + 4Qγ
, (3.14)

instead of (3.13).

We have numerically computed the complex momentum eigenvalues using this method.

The results for the scalar field perturbations are shown in figure 4. The real and imaginary

parts of the five lowest complex momentum are plotted as a function of the frequency.

The real parts start out at qR = 0 for zero frequency. The imaginary parts start out

at a finite value at ω = 0, develop a shoulder that is more pronounced for the higher

– 11 –
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n q2
n

1 −11.5877

2 −34.5270

3 −68.9750

4 −114.9104

5 −172.3312

6 −241.2366

7 −321.6265

8 −413.5009

9 −516.8597

10 −631.7028

Table 1: The first ten glueballs of the scalar mode.

modes and then fall off rather fast until they enter a regime of slow decrease for large

frequencies. Numerically we found that the lowest mode becomes almost constant at

large frequencies with qI ≈ 0.83 at ω = 100. Also the higher modes flatten out for high

frequencies. As expected, higher frequencies can penetrate farther into the plasma. It is an

interesting question if the plasma becomes transparent for some high but finite frequency,

if transparency is reached only in the limit ω = ∞ or if the absorption length stays finite.

Unfortunately our algorithm does not allow us to explore this asymptotic regime. We can

speculate however using the underlying conformal invariance of the N =4 theory. Since for

high frequencies the temperature is less and less important we expect that the absorption

length diverges as ω → ∞, i.e. qI(ω = ∞) = 0. A finite absorption length would point

to an underlying scale in the theory. On the other hand, if the plasma were to become

transparent at some finite value of ω, we would expect that to happen at a scale that is

set by the temperature. However, our numerical results show finite absorption lengths for

much higher frequencies.

3.1.1 Glueball masses

Of particular interest are the absorption lengths in the static limit ω → 0. In this case

we will refer to the absorption length as the screening length. The equation (3.2) with

ω = 0 has been studied before in [17, 18]. There the interpretation of the eigenvalues in

the momentum with q2 < 0 was as masses of glueballs in the three dimensional theory that

is obtained by reduction on the thermal circle in the Euclidean section of the AdS black

hole. The glueball masses can be calculated as the discrete eigenvalues M2
n = −q2

n. Our

numerical results at ω = 0 for the first ten modes are compiled in table 1 and are in good

agreement with results given by refs. [17, 18].

It is important to see if the eigenfunctions correspond to the wave functions of the

glueballs too. In [19] the authors observe that for all the glueball masses the correct

boundary conditions correspond to demanding analyticity of the wave function at the

horizon and the boundary. These are precisely the same boundary conditions that emerge

– 12 –
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in our case at ω = 0. Therefore the screening lengths for static fields corresponds precisely

to the glueball masses computed earlier in [17 – 19].

3.2 Global currents

In the N =4 theory, the global currents associated to R-charges map to mixed components

of the S5 and AdS5 metrics, that can be seen as graviphotons after dimensional reduction

to AdS5. In general, any global symmetry in the field theory will map to a local gauge

symmetry in the holographic dual. Then, to find the poles of the retarded Green functions

in the plasma

Gµν(t − t′,x − y) = −i θ(t − t′)
〈
[Jµ(t,x), Jν (t′,y)]

〉
, (3.15)

we have to compute the complex momentum eigenvalues for vector fields in the AdS black

hole.7 We will see that there are two decoupled sectors, corresponding to transverse and

longitudinal channels. The reason is that temperature breaks four-dimensional Lorentz

symmetry to three-dimensional rotational symmetry. In the glueball language, the zero-

frequency masses correspond to JPC = 1−− and 0−+ states. However the states arising

from the vector fields are also charged under the global R-symmetry and therefore do not

form part of the superselection sector that constitutes QCD3. For simplicity we will refer to

these states also as glueballs. The longitudinal channel is special because it also describes

the diffusion of the conserved charge through the plasma, that does not appear as a glueball

state in the three-dimensional theory because the residue of the diffusion mode vanishes in

the zero-frequency limit. We will show that the diffusion pole is also captured by complex

momentum eigenvalues.

We can compute the complex momentum eigenvalues corresponding to a vector field

in the AdS-Schwarzschild background in an analogous way to the scalar field case. The

equations of motion for such a field are given by the Maxwell equations

1√−g
∂ν

[√−g gµρgνσFρσ

]
= 0 , (3.16)

where Fµν = ∂µAν−∂νAµ. We can choose the Az = 0 gauge in the metric (2.9) and expand

in plane waves Aµ. Separating the vector field in longitudinal and transverse components,

AL(z) = q
q · A(z) and q ·AT (z) = 0, the equations of motion are

0 = ωA′
0(z) + f(z)qA′

L(z) , (3.17)

0 = A′′
0(z) − 1

z
A′

0(z) − 1

f(z)

(
ωqAL(z) + q2A0(z)

)
, (3.18)

0 = A′′
L(z) +

z

f(z)

(
f(z)

z

)′

A′
L(z) +

1

f(z)2

(
ωqA0(z) + ω2AL(z)

)
, (3.19)

0 = A′′
T (z) +

z

f(z)

(
f(z)

z

)′

A′
T (z) +

(
ω2

f(z)2
− q2

f(z)

)
AT (z) . (3.20)

The first three equations are not independent so we can use the first one to write decoupled

equations for A′
0(z) and A′

L(z). Notice that there is a choice of gauge invariant variables

7We are assuming that the total charge in the equilibrium state vanishes, so there are no chemical

potentials.
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EL = qA0 + ωAL and ET = ωAT that describe the diffusive and transverse channel

respectively [8]. However, the spectrum of complex momentum values (equivalently of

quasinormal modes) is gauge invariant, so it should not matter if we choose to work with

gauge components, that obey simpler equations. Since the invariant quantity is EL, this

means that A0 and AL should have the same spectrum, as the constraint (3.17) points out.

Then, the relevant equations for the temporal, longitudinal and transverse components

of the vector field read

0 = V ′′
0 +

(
f ′

f
− 1

z

)
V ′

0 +

(
ω2

f2
− q2

f
− f ′

zf
+

1

z2

)
V0(z) , (3.21)

0 = V ′′
L +

(
3
f ′

f
− 1

z

)
V ′

L +

(
ω2

f2
− q2

f
+

(
f ′

f

)2

+
f ′′

f
− 2

f ′

zf
+

1

z2

)
VL(z) , (3.22)

0 = A′′
T +

(
f ′

f
− 1

z

)
A′

T +

(
ω2

f2
− q2

f

)
AT (z) , (3.23)

where we define V0(z) = A′
0(z), VL(z) = A′

L(z). In the x = 1 − z2 coordinate and for

a suitable factorization of each component, the equations above can be written as Heun

equations:

Temporal. The critical exponents at the singularities are

(
0;−i

ω

4
, i

ω

4

)
,

(
1;

1

2
,
1

2

)
,

(
2;−ω

4
,
ω

4

)
,

(
∞;−1

2
,
3

2

)
.

V0(x) = x−iω/4(x − 1)1/2(x − 2)−ω/4y(x) . (3.24)

Longitudinal. The critical exponents at the singularities are

(
0;−1 − i

ω

4
,−1 + i

ω

4

)
,

(
1;

1

2
,
1

2

)
,

(
2;−1 − ω

4
,−1 +

ω

4

)
,

(
∞;

5

2
−

√
5,

5

2
+

√
5

)
.

VL(x) = x−1−iω/4(x − 1)1/2(x − 2)−1−ω/4y(x) . (3.25)

In both cases we find the same parameters for the Heun equation

α = −ω

4
(1 + i) , β = 2 −

(ω

4
(1 + i)

)
, Q =

q2

4
− (1 + 3i)

ω

4
− (2 − i)

ω2

8
,

γ = 1 − i
ω

2
, δ = 1 , ǫ = 1 − ω

2
. (3.26)

Notice that the boundary conditions for VL(x) are not infalling ones. They are determined

by the constraint 3.17.

Transverse. The critical exponents at the singularities are
(
0;−i

ω

4
, i

ω

4

)
, (1; 0, 1) ,

(
2;−ω

4
,
ω

4

)
, (∞; 0, 1)

AT (x) = x−iω/4(x − 1)(x − 2)−ω/4y(x) .

α = 1 − ω

4
(1 + i) , β = 2 −

(ω

4
(1 + i)

)
, Q =

q2

4
+ 2 − (1 + 5i)

ω

4
− (2 − i)

ω2

8
,

γ = 1 − i
ω

2
, δ = 2 , ǫ = 1 − ω

2
. (3.27)
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n q2
n

1 −5.1313

2 −22.4816

3 −51.2098

4 −91.4106

5 −143.0926

6 −206.2577

7 −280.9066

8 −367.0395

9 −464.6566

10 −573.7580

Table 2: The first ten glueballs of the transverse mode.

As we had anticipated, the temporal and longitudinal components have the same

spectrum, since they obey the same Heun equation, although this was not evident in

equations (3.21) and (3.22). The results are shown in figures 5 and 6. The real and

imaginary parts of the five lowest complex momentum are plotted as a function of the

frequency. The behavior is similar to the one found for the scalar operator. The imaginary

parts start out at a finite value at ω = 0, develop a shoulder that is more pronounced for

the higher modes and then fall off rather fast until they enter a regime of slow decrease for

large frequencies. The real parts start out the qR = 0 for zero frequency.

So far, we have described the absorption of R-current excitations in the plasma. How-

ever, a conserved global charge cannot be dissipated, it is spread out by the slow process of

diffusion. This is described in the hydrodynamic regime ω, q ≪ T by a diffusion pole [25]

(units restored)

ω = −i
q2

2πT
. (3.28)

In our analysis of complex wave numbers we are able to see numerically this mode

(q = (1 + i)
√

ω with our conventions) that fits nicely with the analytic prediction in

the hydrodynamical regime figure 8.

3.2.1 Glueball masses

In the zero frequency limit, the absorption lengths can be interpreted as the inverse glueball

masses of an effective three-dimensional theory. Note however that these states do not

lie in the superselection sector that constitutes the holographic dual of QCD3! For the

longitudinal channel we have to take into account that α(ω = 0) = 0 so we have to use the

modified recursion relation starting at n = 1 (3.14). It turns out that the glueball masses

of the longitudinal channel coincide with the ones found for the scalar operator, table 1.

Indeed, at ω = 0 we can transform the Heun equation with parameters (3.5) into the Heun

equation with parameters (3.26). First, make the coordinate transformation x → x−2
x−1 , that

shuffles the singular points 2 ↔ 0, 1 ↔ ∞. Then, the redefinition y(x) → (x − 1)2y(x)
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(explained in the appendix) shows that both equations are equivalent. Notice that the

solutions that are analytic in [0, 1] in the transformed equation correspond to solutions that

are analytic in [2,∞] in the original equation, and not to the physical modes. However,

such solutions can be generated from the physical ones by conformal transformations on

the two sphere,8 so both types appear for the same values of the parameters. Notice that

the both solutions have a similar analytic structure, the only singularity is a branch cut

joining two of the singular points. Also the fact that the auxiliary parameters Q of both

equations are the same for the particular cases we are considering, allows an immediate

identification of the complex momentum numbers.

The transverse channel has different spectrum, whose first modes are in table 2. Al-

though the glueballs associated to vector fields have non-zero R-charge, and are usually

not considered, our computation shows that the lightest three-dimensional state and hence,

the longest correlation length, belongs to this class.9

3.3 Stress-energy tensor

The stress-energy tensor of the gauge theory encodes important dynamical and thermody-

namical properties of the plasma. Correlation functions of the stress-energy tensor

Gµν,ρσ(t − t′,x − y) = −i θ(t − t′)
〈
[Tµν(t,x), Tρσ(t′,y)]

〉
, (3.29)

are related to perturbations of the metric that leave the S5 factor invariant. Therefore,

we want to introduce a small fluctuation of the four-dimensional part of the metric gµν =

g0
µν + hµν .

In the gauge theory, the breaking of Lorentz symmetry to rotational symmetry by

temperature splits the Green’s functions in transverse, shear and sound channels, that in

the zero frequency limit contain the JPC = 2++, 1++ and 0++ glueball spectrum. This is

reflected in the gravity dual, where the perturbations fall into three different classes with

decoupled field equations [25, 26, 8]. The associated spin to each of these channels is also

2, 1 and 0, so we will refer to them also as tensor, vector and scalar.

In the shear and sound channels there are also hydrodynamical modes that describe

the diffusion of conserved momentum and the propagation of sound. We will not study

the sound channel, but we will show that complex momentum modes also capture the

shear pole. We will work with gauge-invariant variables, following [23]. There, the authors

consider general metrics of the form

ds2 = −F(r) dt2 +
dr2

F(r)
+ r2dσ2

n , (3.30)

where dσ2
n corresponds to a metric of a n-dimensional space of constant sectional curvature

K = 0,±1, and

F(r) = K − 2M

rn−1
− λr2 . (3.31)

8See [30] for an exhaustive list of Heun solutions and their relations.
9This state is even lighter than the lightest QCD3 glueball listed in [19].
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In our case, K = 0, n = 3, λ = −1 and M = r4
H/2.

The Einstein equations are decomposed in tensor, vector and scalar components rel-

ative to the three-dimensional metric. It is thus possible to define three different gauge-

invariant quantities to which we can associate a Schrödinger-like equation of motion [23].

In the z coordinate it reads

−f(z)
d

dz

(
f(z)

dψI

dz

)
+ VI(z)ψI = ω2 ψI , I ≡ {T, V, S} , (3.32)

where for each perturbation we will have a different potential. Rewriting the Schrödinger

equation by shifting (ω, q) 7→ rH(ω, q), the potentials V are given by

VT (z) =
f(z)

4z2
(15 + 4 q2z2 + 9z4) ,

VV (z) =
f(z)

4z2
( 3 + 4 q2z2 − 27z4) , (3.33)

VS(z) =
f(z)

4z2

1

(1 + 6q−2z2)2

(
−1 + 4 q2z2 + 9z4 + 156z6 − 108

z2

q2
+ 540

z4

q4
+ 324

z8

q4

)
,

for tensor, vector and scalar perturbations, respectively.

By making the change of variable x = 1 − z2, the equations for tensor and vector

perturbations lead to a Heun equation. For scalar perturbations the situation is not so

simple, and it requires a separate analysis that we leave for future work, so in the following

we will be concerned only with tensor and vector perturbations.

Tensor perturbations. The characteristic exponents are

(
0;−i

ω

4
, i

ω

4

)
,

(
1;−3

4
,
5

4

)
,

(
2;−ω

4
,
ω

4

)
,

(
∞;

3

4
,
3

4

)
.

ψT (x) = x−iω/4(x − 1)5/4(x − 2)−ω/4y(x) . (3.34)

αβ =
(ω

4
(1 + i) − 2

)2
, Q =

q2

4
+ 4 − (2 − i)

(
(−1 + 3i)

ω

4
+

ω2

8

)
,

γ = 1 − i
ω

2
, δ = 3 , ǫ = 1 − ω

2
. (3.35)

Vector perturbations. The characteristic exponents are

(
0;−i

ω

4
, i

ω

4

)
,

(
1;−1

4
,
3

4

)
,

(
2;−ω

4
,
ω

4

)
,

(
∞;−3

4
,
9

4

)
.

ψV (x) = x−iω/4(x − 1)3/4(x − 2)−ω/4y(x) . (3.36)

αβ =
ω

4
(1 + i)

(ω

4
(1 + i) − 3

)
, Q =

q2

4
− (1 + 5i)

ω

4
− (2 − i)

ω2

8
,

γ = 1 − i
ω

2
, δ = 2 , ǫ = 1 − ω

2
. (3.37)
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n q2
n

1 −18.6758

2 −47.4951

3 −87.7228

4 −139.4167

5 −202.5882

6 −277.2408

7 −363.3762

8 −460.9949

9 −570.0974

10 −690.6838

Table 3: The first ten glueballs of the shear mode.

Notice that tensor fluctuations obey the same equations as a massless scalar field, so the

first modes of the spectrum are plotted in figure 4. The Heun equation we have for the

vector perturbations goes over to the one the authors in [13] found for the shear mode after

the transformation described in the appendix.

As we have commented above, vector fluctuations correspond to the shear channel of

the gauge theory. This channel is associated to the momentum of the plasma, that as a

conserved quantity is not absorbed but diffused. In the hydrodynamical limit it is possible

to find an analytic expression for the diffusion pole [25]

ω = −i
q2

4πT
. (3.38)

We find good numerical agreement for this mode q = (1+ i)
√

2ω, as can be seen in figure 9.

The results for the shear mode are shown in figure 7. The real and imaginary parts

of the five lowest complex momentum are plotted as a function of the frequency. Again,

we find a similar behavior to scalar and vector modes. The imaginary parts start out at

a finite value at ω = 0, develop a shoulder that is more pronounced for the higher modes

and then fall off rather fast until they enter a regime of slow decrease for large frequencies.

The real parts start out the qR = 0 for zero frequency.

3.3.1 Glueball masses

We can find the glueball spectrum of the effective three-dimensional theory by taking the

static limit ω = 0. Again we have to use the recursion relation starting n = 1 (3.14) since

α(ω = 0) = 0. The results for the shear channel are compiled in table 3. The glueball

spectrum for neutral glueballs has been computed using a similar supergravity approach

in [19]. The numbers we find differ actually somewhat from the ones quoted in [19] for the

1++ glueballs. We attribute this to the different numerical methods that have been used

to obtain them.
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4. Conclusions and outlook

We have established a relation between solutions to linearized field equations with complex

momenta in an AdS-black hole background and the absorption lengths of a conformal gauge

theory in a plasma phase. We have explicitly studied some simple examples correspond-

ing to scalar, vector and metric fluctuations. Due to conformal symmetry, all absorption

lengths scale simply with T−1. At zero frequency we find agreement with previous compu-

tations of the effective three-dimensional glueball spectrum [17 – 19]. However, we prefer in

this paper to interpret our results as screening lengths for static fields. This interpretation

has also recently and independently been proposed in ref. [20].

Furthermore, we have computed the dependence of the absorption length on the fre-

quency. The results for the first modes are compiled in figures 4, 5, 6 and 7. In all the

cases, the plasma is less absorptive for higher frequencies. The complex wave numbers also

capture the hydrodynamical behavior for R-charge and momentum diffusion. Our numeri-

cal results are in agreement with the simple analytic continuation of the dispersion relation

for the hydrodynamic modes. This is shown in figures 8 and 9.

One of the interesting results of our study is that the longest screening length (the

lightest “glueball” mass in the dimensionally reduced theory) corresponds to a state with

non-vanishing R-charge. Such a state does not belong to the spectrum of the QCD3 theory,

i.e. the mass gap of the effective three dimensional theory is not the one of QCD3! Glueball

masses play an important role in the determination of the Debye screening length. Here

one studies the glueball exchange between open strings in the AdS black hole background.

As has been pointed out in [20] the mass gap by itself is not important for the Debye

screening, because only specific operators can couple to the open string. Since these open

strings are R-charge neutral, the low mass states with non zero R-charge do not couple to

the string. However, the string configuration one considers usually has its endpoints fixed

on one point on the S5 and it is also possible to consider strings that end on different points

on the S5. In such a situation the light non-zero R-charge states might become relevant

and could modify the result for the screening length.

In this paper we have only studied the cases that can be reduced to Heun equations and

allow the application of the efficient continued fraction approach to the calculation of the

complex momentum eigenvalues. It would certainly be interesting to extend the present

investigations to the cases that cannot be reduced to Heun equations. In these cases

one has to resort to the elementary method of Frobenius expansions and this slows down

the numerical calculation considerably. Nevertheless we think that this is an interesting

problem especially in view of the comparison to the glueball mass calculations.

Another rather intersting point is the question whether the absorption length diverges

in the limit of infinite frequency or whether it stays finite. Unfortunately so far we know

only about numerical methods to evaluate the absorption lengths.

A related problem is the calculation of the absorption lengths in non-conformal holo-

graphic theories. Due to the presence of an underlying scale the dependence on the fre-

quency is likely to show a more complicated pattern than the one we have found for the

conformal case in this paper. It will also be of high interest to compute absorption lengths
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Figure 4: Real and imaginary parts of the lowest five complex momentum eigenvalues versus the

frequency. In the lower-right corner of the first figure we have zoomed in to show the separation

between the five modes.

for the meson states that appear in theories with D7-brane embeddings in the AdS black

hole using the same methods that have been employed in the study of meson quasinormal

modes in [28]. In [29] it has recently been emphasized that instabilities arise for near criti-

cal black hole embeddings. Such instabilities show up as quasinormal modes with positive

imaginary part. As we have seen, similar instabilities can also arise in the study of the

absorption lengths. Since the instabilities in the screening lengths arise at ω = 0 and for

real values of q2 it might be much easier to search for these instead of unstable quasinormal

modes!

We hope to make progress on these questions in future research.
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A. Effective potentials

In section 2.1 we have presented the stability analysis for a scalar field but it can be gener-

alized for any field component ϕ(z) satisfying a decoupled linear second order differential

equation

ϕ′′(z) + A1(z)ϕ′(z) + A0(z)ϕ(z) + B(z)2ω2ϕ(z) = 0 . (A.1)

– 20 –



J
H
E
P
0
9
(
2
0
0
7
)
0
5
7

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Re q

ω

Re q vs. ω for the lowest five Longitudinal/Temporal modes

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 10 20 30 40 50 60 70 80 90 100

Im q

ω

Im q vs. ω for the lowest five Longitudinal/Temporal modes

Figure 5: Longitudinal perturbations of the vector field on AdS. At ω = 0 the values coincide with

the ones of the scalar field perturbations. For ω > 0 the shape is however different.
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Figure 6: The complex momentum eigenvalues of the transverse vector field components. Note

that the lowest mode gives the longest absorbtion length. The plasma is most transparent to

transverse vector perturbations.

Factorizing ϕ(z) = σ(z)φ(z) and normalizing the φ′′ term

φ′′ +

(
2
σ′

σ
+ A1

)
φ′ +

(
A0 + A1

σ′

σ
+

σ′′

σ

)
φ + B(z)2ω2 f = 0 . (A.2)

We now change B(z)dz = dz∗ and divide by B(z)2

∂2
z∗φ + ω2φ +

1

B(z)

(
2
σ′

σ
+ A1 +

B′(z)

B(z)

)
∂z∗φ +

1

B(z)2

(
A0 + A1

σ′

σ
+

σ′′

σ

)
φ = 0 . (A.3)

This expression becomes a Schrödinger equation when σ satisfies

2
σ′

σ
+ A1 +

B′(z)

B(z)
= 0 . (A.4)
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Figure 7: The lowest five complex momentum eigenvalues above the diffuse mode for the shear

channel perturbations.
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Figure 8: Diffusion mode. The solid line represents the numerical solution while the dotted line

is the analytic formula from hydrodynamical analysis.

Then, the same stability arguments can be applied with the proper identification of the

potential

V0(z) = − 1

B(z)2

(
A0 +

1

4

((
B′

B

)2

− A2
1

)
− 1

2

(
A′

1 +

(
B′

B

)′))
. (A.5)

We will now apply this to the other equations under consideration in this paper.

• transverse vector components

V0 =
f(z)

4z2

(
3 + 5z4 + 4q2z2

)
, (A.6)

• longitudinal and temporal vector components

V0 = −f(z)

4z2

(
1 + 7z4 − 4q2z2

)
, (A.7)
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Figure 9: Shear mode. The solid line represents the numerical solution while the dotted line is

the analytic formula from hydrodynamical analysis.

• gravitational vector perturbation (shear mode)

V0 =
f(z)

4z2

(
3 − 27z4 + 4q2z2

)
. (A.8)

Due to the underlying analyticity of the solution of the corresponding Heun equation all

fields, AT , VL, V0,ΦV , fulfill the boundary conditions leading to (2.16) and (2.17). The

effective potential is positive in the case of the transverse vector fields. For the longitudinal

and temporal vector field components it is negative and therefore the stability argument

presented in section 2.1 does not apply. We note that the asymptotic behavior at the

boundary is the same as that of a scalar field saturating the Breitenlohner-Freedman bound.

We take this as an indication for stability, in the original analysis in AdS a positive energy

condition is satisfied even for fields with negative potential [31]. The asymptotic behavior

of the fields is restricted by the condition of having a well-defined conserved energy. In turn,

the positive contribution of the kinetic energy always overcomes the negative contribution

from the potential. A formal analysis [32] can be applied that shows the stability of vector

perturbations. The ‘Hamiltonian’ operator H = −∂2
z∗ + V0 must be positive definite over

the set of normalizable solutions
∫ ∞

zb
∗

dz∗χ
∗Hχ > 0 . (A.9)

We can rewrite (A.9) as

− [χ∗Dρχ]∞zb
∗

+

∫ ∞

zb
∗

dz∗
(
|Dρχ|2 + Vρ|χ|2

)
> 0 , (A.10)

where we have introduced an auxiliary function ρ, such that Dρ = ∂z∗ + ρ and

Vρ = V0 + ∂z∗ρ − ρ2 . (A.11)
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A convenient election that makes Vρ ≥ 0 for vector fluctuations is ρ = −f(z)/2z. We

can easily see that there is no contribution from the boundary term at the horizon, since

χ(∞) → const. and ρ(∞) → 0. Therefore, we are left with the condition

lim
z→0

χ∗

(
∂z −

1

2z

)
χ = 0 . (A.12)

Close to the boundary, V0 ≃ −1/4z2, so the solution is a combination of Bessel functions

χ ∼ a
√

zJ0(ωz) + b
√

zY0(ωz). Then, the condition (A.12) satisfied when b = 0, that is

equivalent to choose the normalizable solution at the boundary.

The effective potential of the shear mode is also interesting. It is negative close to the

horizon. Equation (2.17) shows that this is a necessary requirement for existence of the

hydrodynamic shear mode with Re(q2) = 0. We would expect that if the potential is deep

enough, instabilities will appear. This is in agreement with other analysis that exhibit a

negative well in the interior. Purely imaginary frequencies have been found in the study

of electromagnetic and gravitational perturbations in global AdS [33, 34]. In the extremal

limit, the frequencies seem to reach the real axis at ω = 0, and the geometry was conjectured

to be marginally unstable. Recent works also suggest that instabilities of D7 probe branes

in AdS appear when a quasinormal mode crosses the real axis at ω = 0 [28, 29].

B. Changing parameters in a Heun equation

In this appendix we show how to map a given Heun equation with given parameters into

another Heun equation for a different function with a different set of parameters. This will

allow in some cases to avoid the problem with “fake” modes.

Let us start with a Heun equation for y(x)

y′′ +

(
γ

x
+

δ

x − 1
+

ǫ

x − 2

)
y′ +

αβx − Q

x(x − 1)(x − 2)
y(x) = 0 , (B.1)

where the parameters are subject to the condition α+β +1 = γ + δ + ǫ. The characteristic

exponents at the AdS boundary (x = 1) are in general

{1; 0, 1 − δ} ,

for y(x). In the cases where δ ∈ {0 ∪ Z
−}, the first solution is logarithmic, but the

logarithm might accidentally vanish at the “false frequencies”

y(x) = B[1 + (1 − x) + . . . + h(1 − x)(1−δ) log(1 − x) + . . .] + A[(1 − x)(1−δ) + . . .] , (B.2)

where h = 0. According to [13], the Green’s function is proportional to the ratio A/B, and

the false frequencies are the ones for which accidentally h = 0.

Now we would like to change the function y(x) such that we find a related Heun

equation with different parameters. Let us define

y(x) = (1 − x)̺ Y (x) . (B.3)
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This allows us to find a Heun equation for Y (x), provided ̺ = 1 − δ, and where the new

set is

α̃ = α + ̺ = α + 1 − δ ,

β̃ = β + ̺ = β + 1 − δ ,

Q̃ = Q + 2γ̺ = Q + 2γ(1 − δ) , (B.4)

δ̃ = δ + 2̺ = 2 − δ ,

γ̃ = γ , ǫ̃ = ǫ .

The interesting thing about this shift is that we can find a positive δ̃ ∈ Z
+ when in the

original Heun equation we encounter fake frequencies. This always eliminates the false

frequencies since the second solution is never analytic but goes like (1 − x)(δ−1), which is

a negative (or zero) exponent for δ̃ ∈ Z
+. Now, the Frobenius solution is

Y (x) = B[(1−x)−̺ + . . .+h(1−x)(1−δ−̺) log(1−x)+ . . .]+A[(1−x)(1−δ−̺) + . . .] . (B.5)

The recursion algorithm of Leaver [27] and its adaption to the Heun equation by

Starinets [12] computes when the solution of the Heun equation is analytic at x = 1.

Now the solution that goes with the coefficient B is never analytic, and therefore the false

frequencies do not appear.
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